
GAMA Platform: introduce
heterogeneity in the environment
 with ChouChevLoup model

1

Benoit GAUDOU, University Toulouse 1 Capitole, IRIT; benoit.gaudou@gmail.com

The Lotka-Volterra model (prey-predator
model)

This model represents the population dynamics of 2
species interacting, 1 being prey and the other one the
predator.

2

The prey-predator model

We consider a system with prey (goat) and predator
(wolf) animals.

Animals move randomly in a space.

Predators can hunt and kill prey. Prey can eat some
cabbages on the ground.

Both preys and predators can reproduce.

Both preys and predators can die from natural reasons.

3

The ChouChevLoup model

The ChouChevLoup model is a Prey-Predator model
with a Cabbage ressource, where Preys are goats and
predators are wolves.

Preys and Predators are located in a discret space (a
grid).

Cabbages ressources grow on the pixels.
Pixels can contain a maximum quantity of cabbage
(named carrying capacity). The quantity of the
cabbage is represented by its biomass.

Goats eat cabbages.
4

Model 1: The cabbages

A landscape made up of 900 square spatial units
covered with a wild cabbage species.

The carrying capacity of the environment is a random
value between 0 and 10 biomass.

Initially, the cabbages biomass is random between 0
and the local carrying capacity.

Wild cabbage biomass grows with a logistic function
with a growth rate equal to 0,2.

Display the maps of biomass and of carrying capacity.

5

Notes on the model.

Every kind of agent has built-in attributes:
- name (a string)
- shape (a geometry) (default value = a point)
- location (a point) (value = the centroid of its shape)

In addition, grid agents have additional built-in
attributes:
- grid_x (an integer)
- grid_y (an integer)
- color (a color)
- grid_value (used when grid is created from a data file)
- neighbors (list of plot at a distance 1)

6

global { }

grid plot height: 30 width: 30 {
string state;

}

species animal { }

3000 m

3000m

Space in GAMA

In GAMA, agents have a
location in a reference
continuous space.

The reference continuous
space is the shape of
the world (single agent
instance of the global).

7

global {
geometry shape <- square(3000#m);

}

Space in GAMA

In GAMA, agents have a
location in a reference
continuous space.

To create a grid of cells,
we need to create
explicitly a new species
with a particular spatial
organisation (a
particular topology).

8

3000 m

3000m

Space in GAMA

In GAMA, agents have a
location in a reference
continuous space.

To create a grid of cells,
we need to create
explicitly a new species
with a particular spatial
organisation (a
particular topology).

9

3000 m

3000m

name = ‘’animal2'’
location = {1400.1, 44.02, 0.0}
shape = {27.198, 44.02, 0.0}

Space in GAMA

In GAMA, agents have a
location in a reference
continuous space.

To create a grid of cells,
we need to create
explicitly a new species
with a particular spatial
organisation (a
particular topology).

10

3000 m

3000m

Addition of a 30x30 grid

grid plot height:30 width:30 {
}

Space in GAMA

In GAMA, agents have a
location in a reference
continuous space.

To create a grid of cells,
we need to create
explicitly a new species
with a particular spatial
organisation (a
particular topology).

11

3000 m

3000m

name = ‘plot1’
grid_x = 1
grid_y = 0
location = {150.0, 50.0, 0.0}
shape = a square

The cabbages

A landscape made up of 900 square spatial units
covered with a wild cabbage species.

The carrying capacity of the environment is a random
value between 10 and 0 biomass.

Initially, the cabbages biomass is random between 0
and the local carrying capacity.

Wild cabbage biomass grows with a logistic function
with a growth rate equal to 0,2.

Display the maps of biomass and of carrying capacity.

12

Use of a grid topology
Agents can be organised following 3 topologies (continuous, grid or

graph).

The grid statement allows modeler to define a species of agents

organised as a grid.
- they have a square shape
- they have additional built-in attributes :

- grid_x, grid_y : coordinates in the grid

- neighbors : list of neighbours at a distance 1

- grid_value : initialised when the grid has been created
from an .asc file.

Agents in a grid are created automatically.

13

grid plot height: grid_size width: grid_size neighbors: 8 {
// attributes
// init
// reflexes
// aspects

}

The number of neighbors:
can be 4, 6 or 8

dimension of
the grid

Display of grid agents

• grid agents have a built-in aspect :
- a square/hexagon with the built-in attribute color as color.

- To display grid agents using this built-in aspect:

14

Use the grid statement in a
display to use the built-in

display

display biomass {
grid plot lines: #black;

}

• But additional aspects can be defined and used.
grid plot height: grid_size width: grid_size neighbors: 6 {

aspect plotCarryingCapacity {
draw square(1) color: rgb(0,255*carrying_capacity/max_carrying_capacity,0);

}
}

display carryingCapacity {
species plot aspect: plotCarryingCapacity;

}

They are displayed as
any other species

A landscape made up of 900 square spatial
units covered with a wild cabbage species.
➡ Define a species of agents (organised as a grid),

- with 2 attributes related to cabbages:
 biomass of cabbages and the carrying_capacity.
- with an attribute to compute the color.

15

grid plot height: 30 width: 30 neighbors: 8 {

float biomass;
float carrying_capacity;

rgb color <- rgb(0,255*biomass/max_carrying_capacity,0)
update: rgb(0,255*biomass/max_carrying_capacity,0);

}

Initialisation of agents attributes

➡ The carrying capacity of the environment is equal to a
random value from 0 to 10 biomass units.

➡ Initially, the cabbages biomass is random between 0 and

the local carrying capacity.

16➡ Display it

We define a global variable
for this carrying capacity

max.

global {

float max_carrying_capacity <- 10.0;
}

grid plot height: 30 width: 30 neighbors: 8 {
init {

carrying_capacity <- rnd(max_carrying_capacity);
biomass <- rnd(carrying_capacity);
color <- rgb(0,255*biomass/max_carrying_capacity,0);

}
} a color is defined by its red, green

and blue components (a number
betweenn 0 and 255)

Wild cabbage biomass grows with a logistic
function with a growth rate equal to 0,2.
➡ requiers to define a reflex for plots.

➡The logistic function is the following one:

17

global {
float growth_rate <- 0.2 ;

}

grid plot height: 30 width: 30 neighbors: 8 {

reflex grow {
if(carrying_capacity != 0){

biomass <- biomass * (1 + growth_rate * (1 - biomass/carrying_capacity));
}

}
}

X(t +1) = X(t)*(1+ growth_ rate*(1− X (t)
carry_ capacity))

The cabbages
A landscape made up of 900 square spatial units covered

with a wild cabbage species.

The carrying capacity of the environment is a random value between 10
and 0 biomass.

Initially, the cabbages biomass is random between 0 and the local
carrying capacity.

Wild cabbage biomass grows with a logistic function with a growth rate
equal to 0,2.

Display the maps of biomass and of carrying capacity.

18

experiment e {
output {

display biomass {
grid plot lines: #black;

}
display carrying_capacity {

species plot aspect: carry;
}

}
}

Model 2: Introduction of wolves and goats

We want to add wolves and goats in the model. They
will be located on the center of a plot.

Wolves:
- number : 3

- aspect : red circle

Goats:
- number : 10

- aspect : blue circle

19

Model 2: Introduction of wolves and goats

We want to add wolves and goats in the model. They
will be located on the center of a plot.

Wolves:
- number : 3

- aspect : red circle

Goats
- number : 10

- aspect : blue circle

Create 2 species, with 1 aspect.
Create agents of these species in the

init from the global.
20

Model 2: Introduction of wolves and goats

Create 2 species, with 1
aspect.

Create agents of these
species in the init from
the global.

Display them!

21

global {
init {

create goat number: 3;
create wolf number: 10;

}
}

species wolf {
aspect redCircle {

draw circle(1) color: #red;
}

}

species goat {
aspect blueSquare {

draw square(1) color: #blue;
}

}

experiment cabbagesExp type: gui {
output {

display biomass {
grid plot lines: #black;
species wolf aspect: redCircle;
species goat aspect: blueSquare;

}
}

}

Issue: goats and wolves are not located at
the center of plots

The location should be set at the center of a plot.

Solution: when a goat/wolf is created, choose a plot and
set the goat/wolf location at the center of the plot.

22

species wolf {
init {

location <- one_of(plot).location;
}

}

species goat {
init {

location <- one_of(plot).location;
}

}

operator that choose a
random element of a list/

species

The name of the species can
be used as the list of all
agents of the species

species wolf {
plot my_plot;
init {

my_plot <- one_of(plot where (each.is_free = true));
location <- my_plot.location;
my_plot.is_free <- false;

}

aspect redCircle {
draw circle(1) color: #red;

}
}

Issue 2: nothing is done to avoid to have 2
animals on the same plot.

The plot should “know” if an animal is on it.

Solution: add an attribute to store if the plot is free or
not. We also store the plot in the animal.

23

where operator allows to return
the set of agents/elements of a
container that fulfil a condition

Model 3: Make wolves and goats move

The goats and wolves move at each step on a
neighbor free plot

Add a reflex to goat/wolf to move:
- choose a plot in the neighbourhood of the current plot

- move on it

- free the previous plot

24

Model 3: Make wolves and goats move

Add a reflex to goat/wolf to move:
- choose a plot in the neighbourhood of the current plot

- move on it

- free the previous plot

25

species wolf {
plot my_plot;

reflex move {
plot next_plot <- one_of(my_plot.neighbors where(each.is_free = true));

my_plot.is_free <- true;
next_plot.is_free <- false;

my_plot <- next_plot;
location <- next_plot.location;

}

grid agents have a built-in
neighbours attribute storing the

agents at a distance 1

Move = set is_free attributes of the old
and new my_plot. Move (= change the
location) of the agent to the new_plot

Model 3: Make wolves and goats move

26

species wolf {
plot my_plot;

reflex move {
plot next_plot <- one_of(my_plot.neighbors where(each.is_free = true));

my_plot.is_free <- true;
next_plot.is_free <- false;

my_plot <- next_plot;
location <- next_plot.location;

}

This piece of code is used in init and
move reflex. Let’s create an

action, that can be used in both
cases.

Model 3: Make wolves and goats move

27

This piece of code is used in init
and move reflex. Let’s create an
action, that can be used in both

cases.

species wolf {
plot my_plot;

init {
plot random_plot <- one_of(plot where (each.is_free = true));
do move_to_cell(random_plot);

}

reflex move {
plot next_plot <- one_of(my_plot.neighbors where(each.is_free = true));
do move_to_cell(next_plot);

}

action move_to_cell(plot new_plot) {
if(my_plot != nil) {

my_plot.is_free <- true;
}
new_plot.is_free <- false;
my_plot <- new_plot;
location <- new_plot.location;

}
}

Notes: goat and wolf agents are very
similar!

goat and wolf are 2 kinds of animals which share a lot of attributes
and behaviours => introduction of a new more general species

28

species goat {
plot my_plot;
init {
 my_plot <- one_of(plot where (each.is_free

= true));
 location <- my_plot.location;
 my_plot.is_free <- false;
}

reflex move {
 plot next_plot <- one_of(my_plot.neighbors

where(each.is_free = true));
 my_plot.is_free <- true;
 next_plot.is_free <- false;
 my_plot <- next_plot;
 location <- next_plot.location;
}

aspect blueSquare {
 draw square(2) color: #blue;
}

}

species wolf {
plot my_plot;
init {
 my_plot <- one_of(plot where (each.is_free =

true));
 location <- my_plot.location;
 my_plot.is_free <- false;
}

reflex move {
 plot next_plot <- one_of(my_plot.neighbors

where(each.is_free = true));
 my_plot.is_free <- true;
 next_plot.is_free <- false;
 my_plot <- next_plot;
 location <- next_plot.location;
}

aspect redCircle {
 draw circle(1) color: #red;
}

}

Introduction of the species animal. wolf and
goat inherit from it.

29

species animal {
plot my_plot;
init {

my_plot <- one_of(plot where (each.is_free = true));
location <- my_plot.location;
my_plot.is_free <- false;

}

reflex move {
plot next_plot <- one_of(my_plot.neighbors where(each.is_free = true));
my_plot.is_free <- true;
next_plot.is_free <- false;
my_plot <- next_plot;
location <- next_plot.location;

}
}

species wolf parent: animal {
aspect redCircle {

draw circle(1) color: #red;
}

}

species goat parent: animal {
aspect blueSquare {

draw square(2) color: #blue;
}

}

wolf inherits from animal:
it gets attributes, init and reflex from animal.

But it can have its own attributs and
behaviours

Model 4: Make wolves and goats die…

Wolves and goats can die (for natural reasons)

We represent that using an energy amount to animals.
This energy decreases at each step. When the energy
reaches 0, the animal dies.

The energy management will be the same for wolves
and goats, so it can be defined at the animal level.

30

Addition of energy, its decrease step by
step and its effect on animal life.

31

species animal {
float energy <- initial_energy;

// Other reflexes

reflex energy_loss {
energy <- energy - 1;

}

reflex death when: energy <= 0.0 {
do die;

}

}

The new attribute

New reflex to decrease energy at
each simulation step.

Note: we could replace this reflex
by a update in the energy

declaration

Built-in action, to make
the agent die.

Model 5: goats can get energy by eating
cabbages

Goats can eat a given amount of cabbages from the
plot on which they are located.
This cabbages are transformed into energy.

32

global {

float max_cabbages_eat <- 2.0;
}

species goat parent: animal {

reflex eat_cabbage {
float cab <- min([max_cabbages_eat, my_plot.biomass]);
energy <- energy + cab;
my_plot.biomass <- my_plot.biomass - cab;

}
// ...

The maximum of cabbages that can
be eaten.

A goat cannot take more than the
biomass in a plot.

Note: reflex in goat are executed
before the ones in the animal (more
specific first)

Model 6: reproduction of the animals

TODO: when animals reach a certain amount of energy they can
“reproduce”:

- an animal produces a new animal of the same species in a neighbour free
plot;

- its energy is shared with its child.

33

global {
float reproduction_threshold <- 20.0;

}

species animal {

reflex reproduce when: energy >= reproduction_threshold {
plot plot_for_child <- one_of(my_plot.neighbors where(each.is_free = true));

if(plot_for_child != nil) {
create species(self) number: 1 {

do move_to_cell(plot_for_child);
self.energy <- myself.energy / 2;

}
energy <- energy / 2;

}
}

species(self) returns the species
of the current agent (i.e. either wolf

or goat). This allows to have the
same code for both kinds of animal.

self refers to the current agent (here
the new created agent, the child),

whereas myself refers to the agent that
has called the create (the parent agent)

Note: the init of the species is called before the create block.

Model 7: Make wolves “hunt” and eat goats

The wolves will attempt to eat goat around it.

Update the wolf move reflex:
- look for goats in its neighbourhood,

- if no goat
- choose a random next_plot

- if there is some plots with goats on them
- choose one of them randomly

- take its energy

- kill the goat on it (ask it to die)

- move on this plot

34

Algorithm to make the wolves “hunt”

35

Spatial query to get the goat
agents inside a plot (each)

Kill an agent removes it
from the simulation

reflex move {
plot next_plot <- nil;

list<plot> neigh <- my_plot.neighbors where(!empty(goat inside each));
if(empty(neigh)) {

next_plot <- one_of(my_plot.neighbors where(each.is_free = true));
} else {

next_plot <- one_of(neigh);
goat victim <- one_of(goat inside next_plot);
energy <- energy + victim.energy;
ask victim {

write "" + self + " will die";
do die;

}
}

do move_to_cell(next_plot);
}

Note: reflex move in wolf overwrites the reflex move in
animal. Only the one of wolf will be executed by wolf agents.

Model 8: add a chart to observe the
evolution of both populations

36

experiment cabbagesExp type: gui {
output {

display biomass {
grid plot lines: #black;
species wolf aspect: redCircle;
species goat aspect: blueSquare;

}

display plots {
chart "Nb animals" type: series {

data "#wolves" value: length(wolf);
data "#goats" value: length(goat);

}
}

}
}

Model 9: initialise the environment from
an .asc file.

37

Model 9: initialise the environment from
an .asc file.

38

link to the file

set the boundary of the
environment.

create the grid from the file (the
height and width are

automatically set from the file)

the value read from the .asc file
is stored in the grid_value

attribute.

Plot everything !

Evolution of the biomass

Evolution of the number of
goats, wolves

Evolution of the average
energy

Evolution of the average
harvest rate

…

39

Potential improvements

Plot can diffuse biomass in their neighborhood

Goats looking for plots with more biomass

Goats moving away from wolves

Goats alerting the others when they see a wolf

Goats having a chance to escape the wolves

Goat’s offspring inherits harvest rate from genitor +/-
delta

Wolves resting after having eaten a
goat

Wolves hunting together and sharing
the goat 40

